TÄGLICHE ÜBUNGEN

DIFFERENTIALRECHNUNG

Die sogenannten "Täglichen Übungen" sollten grundlegender Bestandteil des Mathematikunterrichts sein.

Die ersten vier Aufgaben sind elementar und einfach gehalten.

Die Aufgaben 5 bis 8 können als vertiefend und die beiden letzten Aufgaben als schwer betrachtet werden.

Alle 10 Aufgaben innerhalb einer Übung lösen zu lassen, dürfte für die meisten Schüler eine Überforderung sein.

Anzustreben ist, dass alle Schüler die Aufgaben 5 bis 8 bearbeiten.

Die Verwendung von Hilfsmitteln muss situativ entschieden werden. Grundsätzlich sind alle Aufgaben nur durch Kopfrechnen lösbar. Auf der Seite 2 sind die Lösungen angegeben.

Grundlage dieser Übungsvorschläge ist die Arbeit von Heike Krüger und ihrem Betreuer Dr. Eugen Reibis von der Pädagogischen Hochschule Potsdam, jetzt Universität Potsdam, veröffentlicht in Heftform im Jahr 1982. Diese Materialien dürfen beliebig, außer zu kommerziellen Zwecken, verwendet, auch verändert und weitergegeben werden.

Ralf Benzmann

2024

Inhaltsverzeichnis

1.	Ableitung von Potenzfunktionen mit natürlichem Exponenten (Übung 1 von 2)	4
2.	Ableitung von Potenzfunktionen mit natürlichem Exponenten (Übung 2 von 2)	6
3.	Ableitung von Summen von Potenzfunktionen mit natürlichem Exponenten (Übung 1 von 2)	8
4.	Ableitung von Summen von Potenzfunktionen mit natürlichem Exponenten (Übung 2 von 2)	10
5.	Ableitung von Potenzfunktionen mit ganzzahligem Exponenten	12
6.	Ableitung von Potenzfunktionen mit gebrochenem Exponenten	14
7.	Ableitungen höherer Ordnung (Übung 1 von 2)	16
8.	Ableitungen höherer Ordnung (Übung 2 von 2)	18
9.	Anstieg an einer Stelle berechnen (Übung 1 von 2)	20
10.	Anstieg an einer Stelle berechnen (Übung 2 von 2)	22
11.	Berechnen lokaler Extremstellen	24
12.	Bestimmung der Koordinaten des Extrempunktes	26
13.	Berechnen von Wendestellen	28
14.	Bilden von verketteten Funktionen	30
15.	Ableiten von Exponentialfunktionen	32
16.	Ableiten von natürlichen Logarithmusfunktionen	34
17.	Anwenden der Produktregel	36

1. ABLEITUNG VON POTENZFUNKTIONEN MIT NATÜRLICHEM EXPONENTEN (ÜBUNG 1 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	f(x) = 3x	f'(x)	
2.	f(x) = -4x	f'(x)	
3.	$f(x) = x^3$	f'(x)	
4.	$f(x) = 2x^4$	f'(x)	
5.	$f(x) = \frac{7}{4}x^4$	f'(x)	
6.	$f(x) = -\frac{1}{2}x^2$	f'(x)	
7.	$f(x) = \frac{3}{4}x^6$	f'(x)	
8.	$f(x) = -\frac{7}{10}x^5$	f'(x)	
9.	$f(x) = -2a^2x^2$	f'(x)	
10.	$f(a) = 3a^3x^2$	f'(a)	

1.	f'(x)	3

$$f'(x) = -4$$

$$3. \qquad f'(x) = 3x^2$$

$$4. \qquad f'(x) = 8x^3$$

$$5. f'(x) = 7x^3$$

$$6. f'(x) = -x$$

7.
$$f'(x) = \frac{9}{2}x^5$$

8.
$$f'(x) = -\frac{7}{2}x^4$$

$$9. \qquad f'(x) = -4a^2x$$

10.
$$f'(a) = 9a^2x^2$$

2. ABLEITUNG VON POTENZFUNKTIONEN MIT NATÜRLICHEM EXPONENTEN (ÜBUNG 2 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	f(x) = -1,5x	f'(x)	
2.	f(x) = 0.75x	f'(x)	
3.	$f(x) = x^5$	f'(x)	
4.	$f(x) = -1,5x^6$	f'(x)	
5.	$f(x) = -\frac{5}{4}x^8$	f'(x)	
6.	$f(x) = \frac{3}{8}x^4$	f'(x)	
7.	$f(x) = \frac{9}{25}x^5$	f'(x)	
8.	$f(x) = -\frac{7}{49}x^7$	f'(x)	
9.	$f(x) = -2b^3x^5$	f'(x)	
10.	$f(a) = 3x^3 \cdot (-a^4)$	f'(a)	

2.
$$f'(x) = 0.75$$

$$3. \qquad f'(x) = 5x^4$$

$$4. \qquad f'(x) = -9x^5$$

5.
$$f'(x) = -10x^7$$

6.
$$f'(x) = \frac{3}{2}x^3$$

$$f'(x) = \frac{9}{5}x^4$$

$$8. \qquad f'(x) = -x^6$$

9.
$$f'(x) = -10b^3x^4$$

10.
$$f'(a) = -12a^3x^3$$

Name: _____ Datum: _____

3. ABLEITUNG VON SUMMEN VON POTENZFUNKTIONEN MIT NATÜRLICHEM EXPONENTEN (ÜBUNG 1 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = x - x^2$	f'(x)	
2.	$f(x) = -4x + x^3$	f'(x)	
3.	$f(x) = x^3 - x^2$	f'(x)	
4.	$f(x) = 2x^4 + 17x$	f'(x)	
5.	$f(x) = \frac{7}{4}x^4 - 3x^3 - 2x - 5$	f'(x)	
6.	$f(x) = -\frac{1}{2}x^2 + x^3 - 2x^4 + 7x^5$	f'(x)	
7.	$f(x) = \frac{3}{4}x^6 - \frac{3}{5}x^5 + 5x^4 - 12$	f'(x)	
8.	$f(x) = -\frac{7}{10}x^5 + \frac{7}{8}x^4 - \frac{4}{9}x^3$	f'(x)	
9.	$f(x) = -2a^2x^2 + z^3x^3 + 3zx^3$	f'(x)	
10.	$f(a) = 3a^3x^2 - 3a^2x^3 + 4ax$	f'(a)	

1.
$$f'(x) = -2x + 1$$

$$f'(x) = 3x^2 - 4$$

3.
$$f'(x) = 3x^2 - 2x$$

4.
$$f'(x) = 8x^3 + 17$$

5.
$$f'(x) = 7x^3 - 9x^2 - 2$$

6.
$$f'(x) = 35x^4 - 8x^3 + 3x^2 - x$$

7.
$$f'(x) = \frac{9}{2}x^5 - 3x^4 + 20x^3$$

8.
$$f'(x) = -\frac{7}{2}x^4 + \frac{7}{2}x^3 - \frac{4}{3}x^2$$

9.
$$f'(x) = 3x^2z^3 - 4a^2x + 9x^2z$$

10.
$$f'(a) = -6ax^3 + 9a^2x^2 + 4x$$

Name: _____ Datum: _____

4. ABLEITUNG VON SUMMEN VON POTENZFUNKTIONEN MIT NATÜRLICHEM EXPONENTEN (ÜBUNG 2 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = 3x - 2x^2$	f'(x)	
2.	$f(x) = -4x^3 + 4x^2$	f'(x)	
3.	$f(x) = 4x^5 - 12x^4$	f'(x)	
4.	$f(x) = 2x^4 + 17x^3$	f'(x)	
5.	$f(x) = \frac{7}{5}x^5 - 4x^3 - 2x^2 - 5x$	f'(x)	
6.	$f(x) = -\frac{1}{3}x^3 + x^4 - 2x^5 + 7x^6$	f'(x)	
7.	$f(x) = \frac{3}{8}x^6 - \frac{3}{10}x^5 + 5x^4 - 56$	f'(x)	
8.	$f(x) = -\frac{7}{20}x^5 + \frac{7}{16}x^4 - \frac{4}{9}x^3$	f'(x)	
9.	$f(x) = -\frac{1}{4}a^2x^2 + b^4x^4 + 3ax^3$	f'(x)	
10.	$f(a) = -3a^4x^4 - 12a^3x^4 + 18ax$	f'(a)	

1.
$$f'(x) = 3 - 4x$$

$$f'(x) = 8x - 12x^2$$

3.
$$f'(x) = 20x^4 - 48x^3$$

4.
$$f'(x) = 8x^3 + 51x^2$$

5.
$$f'(x) = 7x^4 - 12x^2 - 4x - 5$$

6.
$$f'(x) = 42x^5 - 10x^4 + 4x^3 - x^2$$

7.
$$f'(x) = \frac{9}{4}x^5 - \frac{3}{2}x^4 + 20x^3$$

8.
$$f'(x) = -\frac{7}{4}x^4 + \frac{7}{4}x^3 - \frac{4}{3}x^2$$

9.
$$f'(x) = 4b^4x^3 + 9ax^2 - \frac{1}{2}a^2x$$

10.
$$f'(a) = -12a^3x^4 - 36a^2x^4 + 18x$$

5. ABLEITUNG VON POTENZFUNKTIONEN MIT GANZZAHLIGEM EXPONENTEN

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = x^{-1}$	f'(x)	
2.	$f(x) = -2x^{-1}$	f'(x)	
3.	$f(x) = x^{-3}$	f'(x)	
4.	$f(x) = 2x^{-4}$	f'(x)	
5.	$f(x) = \frac{7}{4}x^{-4}$	f'(x)	
6.	$f(x) = -\frac{1}{2}x^{-2}$	f'(x)	
7.	$f(x) = \frac{3}{2}x^{-6}$	f'(x)	
8.	$f(x) = -\frac{7}{10}x^{-5}$	f'(x)	
9.	$f(x) = -2a^2x^{-2}$	f'(x)	
10.	$f(a) = 3a^{-3}x^2$	f'(a)	

1.
$$f'(x) = -x^{-2} = -\frac{1}{x^2}$$

$$f'(x) = 2x^{-2} = \frac{2}{x^2}$$

3.
$$f'(x) = -3x^{-4} = -\frac{3}{x^4}$$

4.
$$f'(x) = -8x^{-5} = -\frac{8}{x^5}$$

5.
$$f'(x) = -7x^{-5} = -\frac{7}{x^5}$$

6.
$$f'(x) = x^{-3} = \frac{1}{x^3}$$

7.
$$f'(x) = -9x^{-7} = -\frac{9}{x^7}$$

8.
$$f'(x) = \frac{7}{2}x^{-6} = \frac{7}{2x^6}$$

9.
$$f'(x) = 4a^2x^{-3} = \frac{4a^2}{x^3}$$

10.
$$f'(a) = -9x^2a^{-4} = -\frac{9x^2}{a^4}$$

6. ABLEITUNG VON POTENZFUNKTIONEN MIT GEBROCHENEM EXPONENTEN

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = x^{\frac{1}{2}}$	f'(x)	
2.	$f(x) = 2x^{\frac{1}{2}}$	f'(x)	
3.	$f(x) = -2x^{\frac{1}{2}}$	f'(x)	
4.	$f(x) = -2x^{-\frac{1}{2}}$	f'(x)	
5.	$f(x) = \frac{7}{4}x^{\frac{4}{3}}$	f'(x)	
6.	$f(x) = \frac{4}{3}x^{\frac{3}{2}}$	f'(x)	
7.	$f(x) = \frac{3}{2}x^{\frac{7}{6}}$	f'(x)	
8.	$f(x) = -\frac{7}{10}x^{\frac{5}{3}}$	f'(x)	
9.	$f(x) = x^{2.5} + x^{0.5}$	f'(x)	
10.	$f(x) = \sqrt{x^5} + \sqrt{x^3}$	f'(a)	

1.
$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

2.
$$f'(x) = x^{-\frac{1}{2}} = \frac{1}{\sqrt{x}}$$

3.
$$f'(x) = -x^{-\frac{1}{2}} = -\frac{1}{\sqrt{x}}$$

4.
$$f(x) = x^{-\frac{3}{2}} = \frac{1}{\sqrt{x^3}}$$

5.
$$f'(x) = \frac{7}{3}x^{\frac{1}{3}} = \frac{7}{3}\sqrt[3]{x}$$

6.
$$f'(x) = 2x^{\frac{1}{2}} = 2\sqrt{x}$$

7.
$$f'(x) = \frac{7}{4}x^{\frac{1}{6}} = \frac{7}{4}\sqrt[6]{x}$$

8.
$$f'(x) = -\frac{7}{6}x^{\frac{2}{3}} = -\frac{7}{6}\sqrt[3]{x^2}$$

9.
$$f'(x) = 2.5x^{1.5} + 0.5x^{-0.5} = 2.5\sqrt{x^3} + \frac{0.5}{\sqrt{x}}$$

10.
$$f'(x) = \frac{5}{2}x^{\frac{3}{2}} + \frac{3}{2}x^{\frac{1}{2}} = \frac{5}{2}\sqrt{x^3} + \frac{3}{2}\sqrt{x}$$

7. ABLEITUNGEN HÖHERER ORDNUNG (ÜBUNG 1 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	f(x) = 5x	f'(x), f''(x)	
2.	$f(x) = -7x^2$	f'(x), f''(x)	
3.	$f(x) = 4x^3$	f'(x), f''(x)	
4.	$f(x) = -4x^7$	f'(x), f''(x)	
5.	$f(x) = 7x^4 - 3x^3$	f'(x), f''(x)	
6.	$f(x) = -4x^3 - 12x^6$	f'(x), f''(x)	
7.	$f(x) = \frac{3}{4}x^4 - \frac{4}{5}x^5$	f'(x), f''(x)	
8.	$f(x) = -\frac{7}{10}x^5 - \frac{11}{16}x^8$	f'(x), f''(x)	
9.	$f(x) = -2a^2x^2 + 5b^3x^3$	f'(x), f''(x)	
10.	$f(a) = 3a^3x^2 - 5a^4b^2x^2$	f'(a), f''(a)	

1.	f'(x) = 5	f''(x) = 0
2.	f'(x) = -14x	f''(x) = -14
3.	$f'(x) = 12x^2$	f''(x) = 24x
4.	$f'(x) = -28x^6$	$f''(x) = -168x^5$
5.	$f'(x) = 28x^3 - 9x^2$	$f''(x) = 84x^2 - 18x$
6.	$f'(x) = -72x^5 - 12x^2$	$f''(x) = -360x^4 - 24x$
7.	$f'(x) = 3x^3 - 4x^4$	$f''(x) = 9x^2 - 16x^3$
8.	$f'(x) = -\frac{11}{2}x^7 - \frac{7}{2}x^4$	$f''(x) = -\frac{77}{2}x^6 - \frac{14}{2}x^3$
9.	$f'(x) = -4a^2x + 15b^3x^2$	$f''(x) = -4a^2 + 30b^3x$
10	$f'(a) = 9a^2x^2 - 20a^3b^2x^2$	$f''(a) = 18ax^2 - 60a^2b^2x^2$

8. ABLEITUNGEN HÖHERER ORDNUNG (ÜBUNG 2 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = 2x^2 + 4x^3$	f'(x), f''(x)	
2.	$f(x) = -6x^3 + x^{-2}$	f'(x), f''(x)	
3.	$f(x) = 4x^3 - x^{-1}$	f'(x), f''(x)	
4.	$f(x) = -13x^7 - 2x^{-3}$	f'(x), f''(x)	
5.	$f(x) = \frac{7}{8}x^4 - \frac{5}{6}x^3$	f'(x), f''(x)	
6.	$f(x) = \frac{7}{8}x^4 - \frac{5}{6}x^{-3}$	f'(x), f''(x)	
7.	$f(x) = \frac{3}{4}x^{-4} - \frac{4}{5}x^{-5}$	f'(x), f''(x)	
8.	$f(x) = -\frac{7}{10}x^5 - \frac{11}{16}x^{-8}$	f'(x), f''(x)	
9.	$f(x) = -2a^2x^{0.5} + 5b^3x^{-3}$	f'(x), f''(x)	
10.	$f(a) = 3a^{\frac{1}{3}}x^2 - 3a^{-4}b^2x^3$	f'(a), f''(a)	

1.	$f'(x) = 12x^2 + 4x$	f''(x) = 24x + 4
2.	$f'(x) = -18x^2 - \frac{2}{x^3}$	$f''(x) = -36x + \frac{6}{x^4}$
3.	$f'(x) = 12x^2 + \frac{1}{x^2}$	$f''(x) = 24x - \frac{2}{x^3}$
4.	$f'(x) = -91x^6 + \frac{6}{x^4}$	$f''(x) = -546x^5 - \frac{24}{x^5}$
5.	$f'(x) = \frac{7}{2}x^3 - \frac{5}{2}x^2$	$f''(x) = \frac{21}{2}x^2 - 5x$
6.	$f'(x) = \frac{7}{2}x^3 + \frac{5}{2x^4}$	$f''(x) = \frac{21}{2}x^2 - \frac{10}{x^5}$
7.	$f'(x) = -\frac{3}{x^5} + \frac{4}{x^6}$	$f''(x) = \frac{15}{x^6} - \frac{24}{x^7}$
8.	$f'(x) = -\frac{7}{2}x^4 + \frac{11}{2x^9}$	$f''(x) = -14x^3 - \frac{99}{2x^{10}}$
9.	$f'(x) = -\frac{a^2}{\sqrt{x}} - \frac{15b^3}{x^4}$	$f''(x) = \frac{a^2}{2\sqrt{x^3}} + \frac{60b^3}{x^5}$
10.	$f'(a) = \frac{x^2}{\sqrt[3]{a^2}} + \frac{12b^2x^2}{a^5}$	$f''(a) = -\frac{2x^2}{3\sqrt[3]{a^5}} - \frac{60b^2x^2}{a^6}$

9. ANSTIEG AN EINER STELLE BERECHNEN (ÜBUNG 1 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	f(x) = 3x	<i>f</i> ′(1)	
2.	f(x) = -3x	f'(-1)	
3.	$f(x) = x^3$	f'(-2)	
4.	$f(x) = 3x^4$	<i>f</i> ′(2)	
5.	$f(x) = \frac{7}{8}x^4$	<i>f</i> ′(2)	
6.	$f(x) = -\frac{1}{4}x^2$	f'(-2)	
7.	$f(x) = \frac{5}{4}x^6$	f'(-1)	
8.	$f(x) = -\frac{9}{15}x^5$	<i>f</i> ′(3)	
9.	$f(x) = -2a^2x^2$	f'(-0,5)	
10.	$f(a) = 2a^4x^3$	f'(-3)	

1.	f'(x) = 3	f'(1) = 3
2.	f'(x) = -3	f'(-1) = -3
3.	$f'(x) = 3x^2$	f'(-2) = 12
4.	$f'(x) = 12x^3$	f'(2) = 96
5.	$f'(x) = \frac{7}{2}x^3$	f'(2) = 28
6.	$f'(x) = -\frac{1}{2}x$	f'(-2) = 1
7.	$f'(x) = \frac{15}{2}x^5$	$f'(-1) = -\frac{15}{2}$
8.	$f'(x) = -3x^4$	f'(3) = -243
9.	$f'(x) = -4a^2x$	$f'(-0,5) = 2a^2$
10.	$f'(a) = 8a^3x^3$	$f'(-3) = -216x^3$

10. ANSTIEG AN EINER STELLE BERECHNEN (ÜBUNG 2 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = -1,5x^2$	f'(-1,5)	
2.	$f(x) = 0.75x^2$	f'(-1.5)	
3.	$f(x) = 2x^4$	f'(-3)	
4.	$f(x) = -2.5x^4$	<i>f</i> ′(2)	
5.	$f(x) = -\frac{5}{12}x^4$	<i>f</i> ′(3)	
6.	$f(x) = \frac{3}{8}x^5$	<i>f</i> ′(2)	
7.	$f(x) = -\frac{11}{25}x^5$	<i>f</i> ′(5)	
8.	$f(x) = -\frac{5}{18}x^6$	f'(-3)	
9.	$f(x) = -3k^4x^6$	f'(-a)	
10.	$f(z) = -3z^4 \cdot b^4$	f'(-b)	

1.	f'(x) = -3x	f'(-1,5) = 4,5
2.	f'(x) = 1,5x	f'(-1,5) = -2,25

3.
$$f'(x) = 8x^3$$
 $f'(-3) = -216$

4.
$$f'(x) = -10x^3$$
 $f'(2) = -80$

5.
$$f'(x) = -\frac{5}{3}x^3$$

$$f'(3) = -45$$

6.
$$f'(x) = \frac{15}{8}x^4$$
 $f'(2) = 30$

7.
$$f'(x) = -\frac{11}{5}x^4$$
 $f'(5) = -1375$

8.
$$f'(x) = -\frac{5}{3}x^5$$
 $f'(-3) = 405$

9.
$$f'(x) = -18k^4x^5$$
 $f'(-a) = 18a^5k^4$

10.
$$f'(z) = -12b^4z^3$$
 $f'(-b) = 12b^7$

11. BERECHNEN LOKALER EXTREMSTELLEN

Nr.	gegeben	gesucht	Ergebnis
1.	f'(x) = 3x - 3	x_E	
2.	f'(x) = -4x + 8	x_E	
3.	$f(x) = x^2 + 2x + 2$	$f'(x), x_E$	
4.	$f(x) = -x^2 + 4x - 15$	$f'(x), x_E$	
5.	$f'(x) = x^2 - 14x$	x_E	
6.	$f'(x) = x^2 + 5x + 6$	x_E	
7.	$f(x) = \frac{1}{3}x^4 - \frac{1}{2}x^3$	$f'(x), x_E$	
8.	$f(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3 - \frac{3}{2}x^2 + 25$	$f'(x), x_E$	
9.	$f(x) = \frac{1}{3}x^3 - \sqrt{5}x^2 + 5x$	$f'(x), x_E$	
10.	$f(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 + 6x^2 - 77$	$f'(x), x_E$	

1.		$x_E = 1$
2.		$x_E = 2$
3.	f'(x) = 2x + 2	$x_E = -1$
4.	f'(x) = -2x + 4	$x_E = 2$
5.		$x_{E_1} = 0, x_{E_2} = 14$
6.		$x_{E_1} = -3, x_{E_2} = -2$
7.	$f'(x) = \frac{4}{3}x^3 - \frac{3}{2}x^2$	$x_{E_1} = x_{E_2} = 0, x_{E_3} = \frac{9}{8}$
8.	$f'(x) = x^3 - 2x^2 - 3x$	$x_{E_1} = -1, x_{E_2} = 0, x_{E_3} = 3$
9.	$f'(x) = x^2 - 2\sqrt{5}x + 5$	$x_{E_1} = x_{E_2} = \sqrt{5}$
10.	$f'(x) = x^3 + x^2 + 12x$	$x_{E_1} = 0$

12. BESTIMMUNG DER KOORDINATEN DES EXTREMPUNKTES

Nr.	gegeben	gesuch	Ergebnis
1.	$f(x) = 2x - x^2, \ x_E = 3$	y_E	
2.	$f(x) = -4x + 2x^3, \ x_E = -1$	y_E	
3.	$f(x) = x^3 - \frac{1}{3}x^2, x_E = 2$	y_E	
4.	$f(x) = 2x^4 - 12x, \ x_E = -2$	y_E	
5.	$f(x) = \frac{1}{4}x^2 - 4x + 7$	$x_E; y_E$	
6.	$f(x) = -\frac{1}{2}x^2 + 2x + 3$	$x_E; y_E$	
7.	$f(x) = -4x^2 - 4x + 7$	$x_E; y_E$	
8.	$f(x) = -\frac{7}{4}x^2 + \frac{7}{8}x - 21$	$x_E; y_E$	
9.	$f(x) = ax^2 - a^2x + 9$	$x_E; y_E$	
10.	$f(a) = -a^2x + ax^2 - 13$	$a_x; a_y$	

1.			$y_E = -3$
2.			$y_E = 2$
3.			$y_E = \frac{20}{3}$
4.			$y_E = 56$
5.	$f'(x) = \frac{1}{2}x - 4$	$x_E = 8$	$y_E = -9$
6.	f'(x) = -x + 2	$x_E = 2$	$y_E = 5$
7.	f'(x) = -8x - 4	$x_E = -\frac{1}{2}$	$y_E = 8$
8.	$f'(x) = -\frac{7}{2}x + \frac{7}{8}$	$x_E = \frac{1}{4}$	$y_E = -\frac{1337}{64}$
9.	$f'(x) = -a^2 + 2ax$	$x_E = \frac{a}{2}$	$y_E = -\frac{a^3}{4} + 9$
10.	$f'(a) = x^2 - 2ax$	$a_x = \frac{x}{2}$	$a_y = \frac{1}{4}x^3 - 13$

13. BERECHNEN VON WENDESTELLEN

Nr.	gegeben	gesucht	Ergebnis
1.	f''(x) = 4x - 2	X_w	
2.	$f''(x) = -\frac{5}{2}x + 8$	x_w	
3.	$f''(x) = x^2 + 2x - 8$	x_w	
4.	$f''(x) = x^3 + 2x^2 - 3x$	x_w	
5.	$f'(x) = 2x^2 + 20x$	$f''(x), x_w$	
6.	$f'(x) = -x^2 + \frac{3}{2}x + 1$	$f''(x), x_w$	
7.	$f'(x) = \frac{1}{2}x^3 - \frac{1}{3}x^2$	$f''(x), x_w$	
8.	$f(x) = \frac{1}{12}x^4 + \frac{1}{6}x^3 - 3x^2 + 5x$	$f''(x), x_w$	
9.	$f(x) = \frac{1}{12}x^4 - \frac{a}{6}x^3 + 3x$	$f''(x), x_w$	
10.	$f(x) = \frac{x^4}{6} - \frac{5ax^3}{6} - \frac{3a^2x^2}{2}$	$f''(x), x_w$	

1.		$x_w = \frac{1}{2}$
2.		$x_w = \frac{16}{5}$
3.		$x_{w_1} = -4, \ x_{w_2} = 2$
4.		$x_{w_1} = 0, \ x_{w_2} = 1, \ x_{w_3} = -3$
5.	f''(x) = 4x + 20	$x_w = -5$
6.	$f''(x) = -2x + \frac{3}{2}$	$x_w = \frac{3}{4}$
7.	$f''(x) = \frac{3}{2}x^2 - \frac{2}{3}x$	$x_{w_1} = 0, \ x_{w_2} = \frac{4}{9}$
8.	$f''(x) = x^2 + 6x - 6$	$x_{w_1} = -\sqrt{15} - 3, x_{w_2} = \sqrt{15} - 3$
9.	$f''(x) = x^2 - ax$	$x_{w_1} = 0, \ x_{w_2} = a$
10.	$f''(x) = 2x^2 - 5ax - 3a^2$	$x_{w_1} = 3a, \ x_{w_2} = -\frac{a}{2}$

Name: _____ Datum: _____

14. BILDEN VON VERKETTETEN FUNKTIONEN

Nr.	gegeben	gesucht	Ergebnis
1.	$u(x) = x^2, v(x) = x + 2$	u(v(x))	
2.	$u(x) = x^2, v(x) = x + 2$	v(u(x))	
3.	$u(x) = x + 2, v(x) = \sqrt{x}$	u(v(x))	
4.	$u(x) = x + 2, v(x) = \sqrt{x}$	v(u(x))	
5.	$u(x) = (x - 1)^2, v(x) = x + 1$	u(v(x))	
6.	$u(x) = (x - 1)^2, v(x) = x + 1$	v(u(x))	
7.	$u(x) = 1 - x^2$, $v(x) = (1 - x)^2$	u(v(x))	
8.	$u(x) = 1 - x^2$, $v(x) = (1 - x)^2$	v(u(x))	
9.	$u(x) = x^4, u(v(x)) = 16 \cdot (2x - 1)^4$	v(x)	
10.	$v(x) = x^2 - 3, \ u(v(x)) = \frac{1}{2 \cdot x^2 - 6}$	u(x)	

1.	$u(v(x)) = (x+2)^2$
2.	$v(u(x) = x^2 + 2$
3.	$u(v(x)) = \sqrt{x} + 2$
4.	$v(u(x)) = \sqrt{x+2}$
5.	$u(v(x)) = x^2$
6.	$v(u(x)) = x^2 - 2x + 2$
7.	$u(v(x)) = -x^4 + 4x^3 - 6x^2 + 4x$
8.	$v(u(x)) = x^4$
9.	v(x) = 4x - 2
10.	$u(x) = \frac{1}{2x}$

15. ABLEITEN VON EXPONENTIALFUNKTIONEN

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = e^{2x}$	f'(x)	
2.	$f(x) = e^{-3x}$	f'(x)	
3.	$f(x) = e^{4x}$	f'(x)	
4.	$f(x) = -e^{-2x}$	f'(x)	
5.	$f(x) = 2x + e^{3x}$	f'(x)	
6.	$f(x) = x^3 + 0.4e^{2x}$	f'(x)	
7.	$f(x) = 5e^{-4x+2}$	f'(x), f''(x)	
8.	$f(x) = 3x^2 - \frac{1}{3}e^{-3x}$	f'(x), f''(x)	
9.	$f(x) = 3a \cdot e^{-a^2 x^2}$	f'(x)	
10.	$f(a) = -4x \cdot e^{-4xa^2}$	f'(a)	

1.	$f'(x) = 2e^{2x}$	
2.	$f'(x) = -3e^{-3x}$	

$$f'(x) = 4e^{4x}$$

$$f'(x) = 2e^{-2x}$$

$$5. f'(x) = 3e^{3x} + 2$$

6.
$$f'(x) = 0.8e^{2x} + 3x^2$$

7.
$$f'(x) = -20e^{-4x+2}$$
 $f''(x) = 80e^{-4x+2}$

8.
$$f'(x) = e^{-3x} + 6x$$
 $f''(x) = 6 - 3e^{-3x}$

9.
$$f'(x) = -6a^3x \cdot e^{-a^2x^2}$$

10.
$$f'(x) = 32a x^2 \cdot e^{-4xa^2}$$

Name: ______ Datum: _____

16. ABLEITEN VON NATÜRLICHEN LOGARITHMUSFUNKTIONEN

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = \ln(x)$	f'(x)	
2.	$f(x) = 3\ln(x)$	f'(x)	
3.	$f(x) = \ln(4x)$	f'(x)	
4.	$f(x) = -4\ln(0.5x)$	f'(x)	
5.	$f(x) = \ln(2x - 1)$	f'(x)	
6.	$f(x) = x + \ln(-2x)$	f'(x)	
7.	$f(x) = 6x + \ln(4x)$	f'(x), f''(x)	
8.	$f(x) = 3x^2 - \frac{1}{3}\ln(3x)$	f'(x), f''(x)	
9.	$f(x) = 3ax^2 + \ln(a^3x^2)$	f'(x)	
10.	$f(a) = 3ax^2 + \ln(a^3x^2)$	f'(a)	

1.	$f'(x) = \frac{1}{x}$		
----	-----------------------	--	--

$$f'(x) = \frac{3}{x}$$

$$f'(x) = \frac{1}{x}$$

$$f'(x) = -\frac{4}{x}$$

5.
$$f'(x) = \frac{2}{2x - 1}$$

$$6. \qquad f'(x) = \frac{1}{x} + 1$$

7.
$$f'(x) = \frac{1}{x} + 6$$

$$f''(x) = -\frac{1}{x^2}$$

8.
$$f'(x) = 6x - \frac{1}{3x}$$

$$f''(x) = 6 + \frac{1}{3x^2}$$

$$9. \qquad f'(x) = 6ax + \frac{2}{x}$$

10.
$$f'(x) = \frac{3}{a} + 3x^2$$

Name: _____ Datum: _____

17. ANWENDEN DER PRODUKTREGEL

Nr.	gegeben	gesucht	Ergebnis
1.	$f(x) = x \cdot e^x$	f'(x)	
2.	$f(x) = x \cdot e^{3x}$	f'(x)	
3.	$f(x) = 3x \cdot e^x$	f'(x)	
4.	$f(x) = -3x \cdot e^{4x}$	f'(x)	
5.	$f(x) = x \cdot \ln(x)$	f'(x)	
6.	$f(x) = x \cdot \ln(3x)$	f'(x)	
7.	$f(x) = 6x \cdot e^{-2x}$	f'(x), f''(x)	
8.	$f(x) = -5x \cdot \ln(3x)$	f'(x), f''(x)	
9.	$f(x) = 3ax^2 \cdot e^{ax}$	f'(x)	
10.	$f(a) = 3ax^2 \cdot \ln(ax)$	f'(a)	

1.	$f'(x) = e^x + x \cdot e^x = (1+x) \cdot e^x$	
2.	$f'(x) = 3x \cdot e^{3x} + e^{3x} = (3x+1) \cdot e^{3x}$	
3.	$f'(x) = (3x+3) \cdot e^x$	
4.	$f'(x) = (-12x - 3) \cdot e^{4x}$	
5.	$f'(x) = \ln(x) + 1$	
6.	$f'(x) = \ln(3x) + 1$	
7.	$f'(x) = (6 - 12x) \cdot e^{-2x}$	$f''(x) = (24x - 24) \cdot e^{-2x}$
8.	$f'(x) = -5\ln(3x)$	$f''(x) = -\frac{5}{x}$
9.	$f'(x) = (3a^2 \cdot x^2 + 6a \cdot x) \cdot e^{ax}$	
10.	$f'(x) = 3x^2 \cdot \ln(ax) + 3x^2$	