TÄGLICHE ÜBUNGEN

INTEGRALRECHNUNG

Die sogenannten "Täglichen Übungen" sollten grundlegender Bestandteil des Mathematikunterrichts sein.

Die ersten vier Aufgaben sind elementar und einfach gehalten.

Die Aufgaben 5 bis 8 können als vertiefend und die beiden letzten Aufgaben als schwer betrachtet werden.

Alle 10 Aufgaben innerhalb einer Übung lösen zu lassen, dürfte für die meisten Schüler eine Überforderung sein.

Anzustreben ist, dass alle Schüler die Aufgaben 5 bis 8 bearbeiten.

Die Verwendung von Hilfsmitteln muss situativ entschieden werden. Grundsätzlich sind alle Aufgaben nur durch Kopfrechnen lösbar. Auf der Seite 2 sind die Lösungen angegeben.

Diese Materialien dürfen beliebig, außer zu kommerziellen Zwecken, verwendet, auch verändert und weitergegeben werden.

Ralf Benzmann

2024

Inhaltsverzeichnis

1.	Funktionswerte von Stammfunktionen berechnen	3
2.	Bestimmte Integrale (Übung 1 von 2)	5
3.	Bestimmte Integrale (Übung 2 von 2)	7
4.	Einfache Flächenberechnungen mit Integralen	9
5.	Schwierigere Flächenberechnungen mit Integralen	14
6.	Uneigentliche Integrale	16
7.	Volumen bei Rotation um die x-Achse	18
8.	Volumen bei Rotation um die Y-Achse	20
9.	Berechnung von Bogenlängen	22
10.	Berechnung von Mantelflächen	24

1. FUNKTIONSWERTE VON STAMMFUNKTIONEN BERECHNEN

Nr.	gegeben	gesucht	Ergebnis
1.	$[x]_1^7$	F(b) - F(a)	
2.	$\begin{bmatrix} x^2 \end{bmatrix}_{-2}^4$	F(b) - F(a)	
3.	$[x^3]_{-1}^3$	F(b) - F(a)	
4.	$\left[\frac{1}{3}x^2\right]_{-5}^{-4}$	F(b) - F(a)	
5.	$\left[x^2 - x^3\right]_3^7$	F(b) - F(a)	
6.	$\left[\frac{1}{3}\sqrt{x}\right]_4^{16}$	F(b) - F(a)	
7.	$\left[-x^4 - \frac{1}{2}\sqrt{x}\right]_1^4$	F(b) - F(a)	
8.	$\left[x^3 - x\right]_2^b$	F(b) - F(a)	
9.	$\left[x^3 + x^2\right]_a^4$	F(b) - F(a)	
10.	$\left[ax - bx^2\right]_a^b$	F(b) - F(a)	

- 1. 6
- 2. 12
- 3. 28
- 4. -3
- 5. -276
- $6. \qquad \frac{2}{3}$
- 7. $-\frac{511}{2}$
- 8. $b^3 b 6$
- 9. $-a^3 a^2 + 80$
- 10. $-a^2 + ab + a^2b b^3$

2. BESTIMMTE INTEGRALE (ÜBUNG 1 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	$\int_0^1 x \ dx$		
	$\int_{-1}^{1} 2x \ dx$		
3.	$\int_{1}^{2} 3x \ dx$		
	$\int_0^3 3x^2 \ dx$		
5.	$\int_{-3}^{2} x^2 dx$		
6.	$\int_{1}^{2} 4x^3 dx$		
7.	$\int_{1}^{2} \left(x^3 - x^2 \right) dx$		
8.	$\int_{1}^{b} x^2 \ dx = 3$	b	
9.	$\int_{a}^{3} x^3 dx = 20$	a	
10.	$\int_{1}^{4} a x^3 dx = 255$	a	

10.

a = 4

1.	$\frac{1}{2}$
2.	0
3.	$\frac{9}{2}$
4.	27
5.	$\frac{35}{3}$
6.	15
7.	17 12
8.	b=2
9.	a = 1

Name:	Datum:

3. BESTIMMTE INTEGRALE (ÜBUNG 2 VON 2)

Nr.	gegeben	gesucht	Ergebnis
1.	$\int_{1}^{2} e^{x} dx$		
2.	$\int_{1}^{4} \sqrt{x} \ dx$		
3.	$\int_{1}^{3} \frac{1}{x} dx$		
4.	$\int_{1}^{2} \ln x \ dx$		
5.	$\int_2^5 \frac{3}{x^2} \ dx$		
	$\int_{-2}^{4} \frac{3}{x^4} \ dx$		
	$\int_0^6 \frac{1}{2} e^{2x} dx$		
8.	$\int_{2}^{4} \frac{3}{\sqrt{x}} dx$		
9.	$\int_{\frac{1}{2b}}^{\frac{1}{b}} -2b^3 x^5 \ dx$		
10.	$\int_{\sqrt{x}}^{x} -3a^4x^2 da$		

1. $e^2 - e$

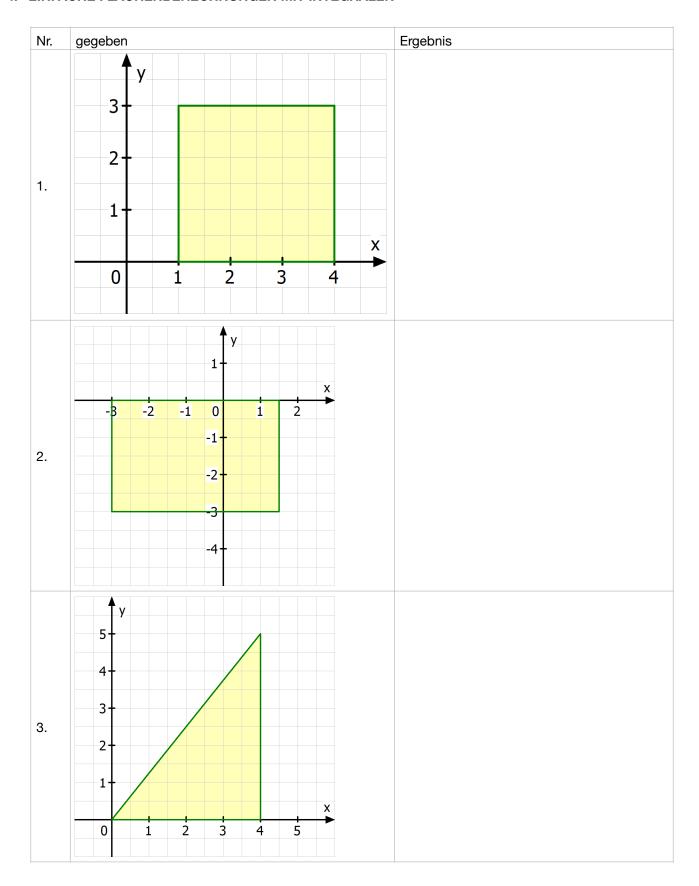
2. $\frac{14}{3}$

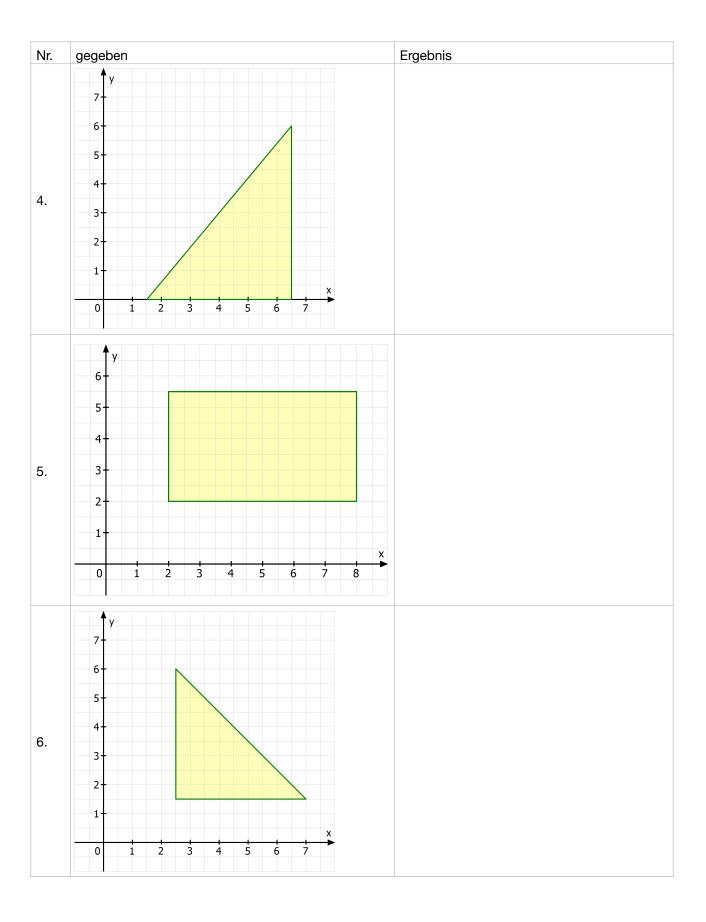
3. ln 3

4. $-1 + \ln 4$

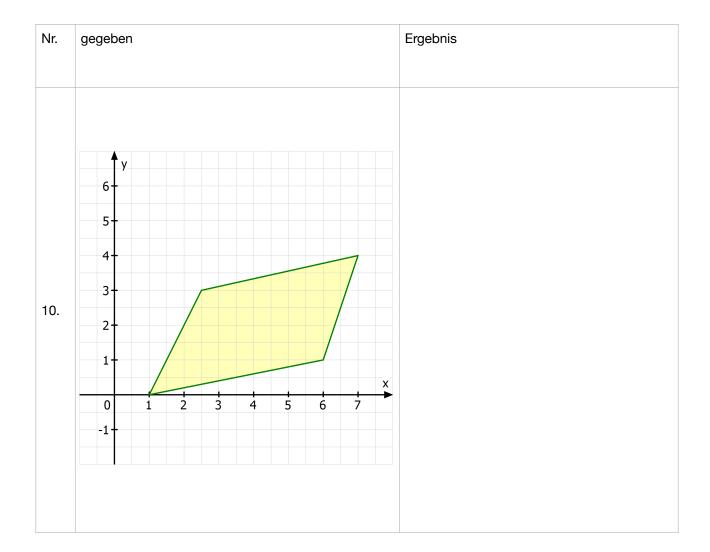
 $5. \qquad \frac{9}{10}$

6. $\frac{7}{64}$


7. $\left[\frac{1}{4} e^{2x} \right]_0^6 = \frac{1}{4} e^{12} - \frac{1}{4} e^0 = \frac{1}{4} \left(e^{12} - 1 \right)$


8. $\left[6\sqrt{x} \right]_2^4 = 12 - 6\sqrt{2} = 6\left(2 - \sqrt{2}\right)$


9. $\left[-\frac{1}{3}b^3x^6 \right]_{\frac{1}{2b}}^{\frac{1}{b}} = -\frac{1}{3b^3} + \frac{1}{192b^3} = -\frac{21}{64b^3}$


10. $-3x^2 \left(\frac{x^5}{5} - \frac{x^{5/2}}{5} \right)$

4. EINFACHE FLÄCHENBERECHNUNGEN MIT INTEGRALEN

1.
$$\int_{1}^{4} 3 dx = 9 FE$$
2.
$$\left| \int_{-3}^{1.5} -3 dx \right| = 13.5 FE$$
3.
$$\int_{0}^{4} \frac{5}{4} x dx = 10 FE$$
4.
$$\int_{1.5}^{6.5} \left(\frac{6}{5} x - \frac{9}{5} \right) dx = 15 FE$$
5.
$$\int_{2}^{8} (5.5 - 2) dx = 21 FE$$
6.
$$\int_{2.5}^{7} (8.5 - x) dx - \int_{2.5}^{7} 1.5 dx = 10.125 FE$$
7.
$$\left| \int_{1}^{6} -3 dx \right| + \int_{1}^{6} 1.5 dx = 22.5 FE$$
8.
$$\int_{0}^{5} (5 - x) dx = 12.5 FE$$
9.
$$\int_{1}^{7} 5 dx - \int_{2}^{5} 1 dx - \int_{1}^{2} (4x - 3) dx - \int_{5}^{7} (15 - 2x) dx = 18 FE$$
10.
$$\int_{\frac{5}{2}}^{6} \left(\frac{x}{5} - \frac{1}{5} \right) dx = \frac{91}{40}, \int_{1}^{\frac{5}{2}} (2x - 2) dx = \frac{9}{4}$$
11.
$$\int_{15.75}^{5} -\frac{5}{2} - \frac{91}{40} + \frac{9}{4} - \frac{9}{40} = 13 FE$$

Name: _____ Datum: _____

5. SCHWIERIGERE FLÄCHENBERECHNUNGEN MIT INTEGRALEN

Nr.	gegeben	Ergebnis
1.	$f(x) = \frac{1}{3}x^2 - 2x + 4$ $x_1 = -1, x_2 = 4$	
2.	$f(x) = -x^2 - 1$ $x_1 = -2, x_2 = 3$	
3.	$f(x) = x^{2} + x - 2$ $x_{1} = -1, \ x_{2} = 2$	
4.	$f(x) = x^3 - 4x^2 - x + 4$ $x_1 = -1, \ x_2 = 4$	
5.	$f(x) = x^2 - 4x \text{ von 2 bis } a$ gesucht a für $A_{ges} = \frac{48}{3} FE$	
6.	$f(x) = \frac{1}{2}x + 3, g(x) = \sqrt{x}$ $x_1 = 2, x_2 = 4$	
7.	$f(x) = \frac{1}{2}x + 2, g(x) = m \cdot x + 2$ $x_1 = 2, x_2 = 6, A_f - A_g = 12$ gesucht: m	
8.	$f(x) = x + 1, g(x) = -x^2 + 3$ $x_1 = -1, x_2 = 2$	
9.	$f(x) = -\frac{1}{2}x + 4, g(x) = x - 2$ $x_1 = 1, x_2 = a, A_2 = 2A_1, a = ?$	
10.	$f(x) = x^2$, $x_1 = 0$, $x_2 = 2$ x = k teilt Fläche in 1:7, $k = ?$	

1.	$\frac{110}{9} FE$
	70

$$2. \qquad \frac{50}{3} FE$$

3.
$$\frac{31}{6}$$
 FE

$$4. \qquad \frac{253}{12} FE$$

5.
$$a = 6$$

6.
$$\frac{11}{3} + \frac{4}{3}\sqrt{2} \ FE$$

$$7. m = -\frac{1}{4}$$

8.
$$\frac{31}{6} FE$$

9.
$$a = 4 \pm \sqrt{18}$$

10.
$$k_1 = \sqrt[3]{3}, k_2 = \sqrt[3]{24}$$

6. UNEIGENTLICHE INTEGRALE

Nr.	gegeben	Ergebnis
1.	$\int_{1}^{\infty} \frac{1}{x^2} dx$	
2.	$\int_{1}^{\infty} \frac{1}{x^3} dx$	
3.	$\int_{1}^{\infty} \frac{1}{x} dx$	
4.	$\int_{1}^{\infty} \sqrt{x} dx$	
5.	$\int_{1}^{\infty} \frac{3}{\sqrt{x}} dx$	
6.	$\int_0^\infty e^x dx$	
7.	$\int_{-\infty}^{0} e^{x} dx$	
8.	$\int_{-1}^{1} \frac{1}{x^2} dx$	
9.	$\int_{-4}^{-1} \frac{1}{(x+2)^2} dx$	
10.	$\int_0^1 \frac{x}{\sqrt{1-x^2}} dx$	

$$\lim_{a \to \infty} \left(1 - \frac{1}{a} \right) = 1$$

$$\lim_{a \to \infty} \left(\frac{1}{2} - \frac{1}{2a^2} \right) = \frac{1}{2}$$

$$\lim_{a \to \infty} \ln(a) = \infty$$

$$4. \qquad \lim_{a \to \infty} \frac{2}{3} \left(a^{3/2} - 1 \right) = \infty$$

$$\lim_{a \to \infty} 6\left(\sqrt{a} - 1\right) = \infty$$

$$\lim_{a\to\infty} \left(e^a - 1\right) = \infty$$

7.
$$\lim_{a \to -\infty} (1 - e^a) = 1$$

8. Polstelle bei
$$x = 0!$$

9. Polstelle bei
$$x = -2!$$

10.
$$\lim_{a \to 0} \sqrt{1 - a^2} = 1$$

Name:	

7. VOLUMEN BEI ROTATION UM DIE X-ACHSE

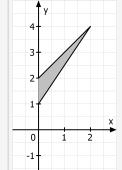
Nr.	gegeben	Ergebnis
1.	f(x) = 4, [0 1]	
2.	f(x) = x, [0 1]	
3.	$f(x) = \sqrt{x^3}, [0 5]$	
4.	f(x) = x - 3, [-1 1]	
5.	$f(x) = 4$ $g(x) = x^2$	
6.	$f(x) = x$ $g(x) = x^2$	
7.	$f(x) = -x^2 + 3$ $g(x) = 2$	
8.	$f(x) = x^2$ $g(x) = x^4$	
9.	$f(x) = 4x^2 - x^3$ $g(x) = 3x$	
10.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$ $x_1 = -a, x_2 = a$	

1.	16π VE
2.	$\frac{\pi}{3} VE$
3.	$\frac{625\pi}{4} VE$
4.	$\frac{56\pi}{3} VE$
5.	$\frac{512\pi}{15} VE$
6.	$\frac{\pi}{30} VE$
7.	$\frac{16\pi}{15} VE$
8.	$\frac{16\pi}{315} VE$
9.	$\frac{162\pi}{35} VE$
10.	$V = \frac{\pi b^2}{a^2} \int_{-a}^{a} (a^2 - x^2) dx = \frac{4}{3} \pi a b^2 VE$

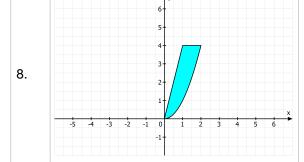
8. VOLUMEN BEI ROTATION UM DIE Y-ACHSE

Nr.	gegeben	Ergebnis

1.
$$x = 2, y_1 = 0, y_2 = 4$$


2.
$$y = x, y_1 = 0, y_2 = 3$$

3.
$$y = x^2, y_1 = 0, y_2 = 4$$


4.
$$y = \frac{1}{2}x^2 + 1, y_1 = 3, y_2 = 9$$

5.
$$y = -4x^2 + 2$$
, $y_1 = -4$, $y_2 = 2$

6.
$$y = -8x + 12, y_1 = -3, y_2 = 6$$

7.

9.
$$y = \frac{b}{a}\sqrt{x^2 - a^2}, x_1 = a, x_2 = 2a$$

10.
$$y = e^{-\frac{1}{3}x^2}, y_1 = 0,1, y_2 = 0,4$$

1.	16π VE
2.	$9\pi VE$
3.	$8\pi VE$
4.	60π VE
5.	$\frac{9}{2}\pi VE$
6.	$\frac{1053}{64}\pi \ VE$
7.	$4\pi - \frac{8}{3}\pi = \frac{4}{3}\pi \ VE$
8.	$8\pi - \frac{4}{3}\pi = \frac{20}{3}\pi \ VE$
9.	$\frac{4}{3}\pi ab^2$
10.	$-3\pi(0,4\ln 4 - 0,3\ln 10 - 0,3)$

9. BERECHNUNG VON BOGENLÄNGEN

Nr.	gegeben	Ergebnis
1.	$f(x) = x$ $x_1 = 0, x_2 = 3$	
	$x_1 = 0, \ x_2 = 3$	
2.	f(x) = 3x	
	$x_1 = -2, \ x_2 = 2$	
3.	f(x) = -0.5x	
	$x_1 = 2, \ x_2 = 7$	
4.	$f(x) = \frac{2}{3}\sqrt{x^3}$	
	$x_1 = 0, \ x_2 = 3$	
5.	$f(x) = \sqrt{x^3}$ $x_1 = 0, \ x_2 = 4$	
	$x_1 = 0, \ x_2 = 4$	
6.	$f(x) = \frac{4}{3}x, \ l = 5 \ LE$ $x_1 = 0, \ x_2 = a$	
	1 /5 15	
7.	$f(x) = -\frac{1}{2}x, \ l = \sqrt{5} \ LE$ $x_1 = a, \ x_2 = 1$	
8.	$f(x) = x + 1, g(x) = \frac{2}{3}x^{1.5}$	
0.	$2l_f = l_g, \ x_1 = -1, \ x_2 = a$	
9.	y = mx + n, l = 5 $x_1 = 0, x_2 = a, m(a)$	
10.	$f(x) = \frac{x-3}{3}\sqrt{x}$	
	$x_1 = 0, \ x_2 = 4$	

- 1. $3\sqrt{2} LE$
- $2. \qquad 4\sqrt{10} \ LE$
- 3. $5\sqrt{0,75} LE$
- $4. \qquad \frac{14}{3} \ LE$
- 5. $\frac{8}{27} \left(10\sqrt{10} 1 \right) LE$
- 6. a = 3
- 7. a = -1
- 8. a = 17
- 9. $m^2 = \frac{25}{a^2} 1, \ a \neq 0$
- 10. $\frac{14}{3} LE$

Name:	Datum:
11411101	

10. BERECHNUNG VON MANTELFLÄCHEN

Nr.	gegeben	Ergebnis
	$f(x) = x$ $x_1 = 0, x_2 = 3$ A_{M_x}	
2.	f(x) = x $y_1 = 0, y_2 = 3$ A_{M_y}	
3.	$f(x) = 2x$ $x_1 = 0, x_2 = 6$ A_{M_X}	
4.	f(x) = 2x $y_1 = 0, y_2 = 12$ A_{M_y}	
5.	$f(x) = x^2$ $y_1 = 0, y_2 = 10$ A_{M_y}	
6.	$f(x) = -\frac{3}{2}x + 6$ $x_1 = 0, x_2 = 4$ A_{M_X}	
7.	f(x) = -2x + 8 $y_1 = 0, y_2 = 6$ A_{M_y}	
8.	$f(x) = x^3$ $x_1 = 0, x_2 = 3$ A_{M_x}	
9.	$f(x) = \sqrt{2 - x^2} x_1 = 1, \ x_2 = \sqrt{2} A_{M_X}$	
10.	Kugelzone mit $h = y_2 - y_1$ $A_{M_{\mathcal{Y}}}$	

- 1. $9\sqrt{2}\pi \ FE$
- 2. $9\sqrt{2}\pi \ FE$
- 3. $72\sqrt{5}\pi \ FE$
- 4. $36\sqrt{5}\pi \ FE$
- $5. \qquad \frac{\pi}{6} \left(41\sqrt{41} 1 \right) \ FE$
- 6. $12\sqrt{13}\pi \ FE$
- 7. $32\sqrt{5}\pi FE$
- 8. $\frac{\pi}{27} \left(10\sqrt{10} 1 \right) FE$
- 9. $2\pi \left(2-\sqrt{2}\right) FE$
- 10. $2\pi rh FE$