TÄGLICHE ÜBUNGEN

Determinanten und Matrizen

Die sogenannten "Täglichen Übungen" sollten grundlegender Bestandteil des Mathematikunterrichts sein.

Die ersten vier Aufgaben sind elementar und einfach gehalten.

Die Aufgaben 5 bis 8 können als vertiefend und die beiden letzten Aufgaben als schwer betrachtet werden.

Alle 10 Aufgaben innerhalb einer Übung lösen zu lassen, dürfte für die meisten Schüler eine Überforderung sein.

Anzustreben ist, dass alle Schüler die Aufgaben 5 bis 8 bearbeiten.

Die Verwendung von Hilfsmitteln muss situativ entschieden werden. Grundsätzlich sind alle Aufgaben nur durch Kopfrechnen lösbar. Auf der Seite 2 sind die Lösungen angegeben.

Verwendet wurden einige Aufgaben und Ideen aus: Dr. Hugo Schwarz, Algebra 1, Strelitz 1926; Kroll, Seiffert, Vaupel, Analytische Geometrie/Lineare Algebra, Tümmler 1997; Paula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg 2001.

Ralf Benzmann

2024

Inhaltsverzeichnis

1.	GLS mit GAUSS Lösen	3
2.	Mit Determinanten rechnen	5
3.	GLS mit Determinanten lösen	7
4.	Mit Matrizen rechnen	9
5.	Matrizen Multiplizieren	11
6.	Inverse, Rang, Matrizengleichungen	13
7.	Lineare Abbildungen	15
8.	Eigenwerte und Eigenvektoren	17

Name:	Datum	:
	Batan	

1. GLS MIT GAUSS LÖSEN

Nr.	Gegeben	Ergebnis
1.	-x - 2y = 0 $2x - y = -3$	
2.	2x + 3y = 7 $3x - 2y = 4$	
3.	-2x + y + 3z = -5 $2y + 4z = 2$ $2z = 4$	
4.	2x - 3y + 6z = 5 $4y - 2z = -14$ $-3z = 9$	
5.	2x - 4y + z = -12 $-6y - 4z = 5$ $4y - 2z = 20$	
6.	3x - 6y + 3z = -13 5y + 7z = 4 6y + 9z = 4	
7.	2x - 3y + 4z = -6 2x - 3y - 4z = -12 x - 3y + 4z = -3,5	
8.	-x + 7y - z = 5 $4x - y + z = 1$ $5x - 3y + z = -1$	
9.	4x + y + 2z = 2k $3x + 2y + z = k$ $2x + 3y + 3z = k + 3$	
10.	x + 2y - 3z = 6 2x - y + 4z = 2 4x + 3y - 2z = 14 Die allgemeine Lösung und ein Lösungstripel bestimmen!	

1.
$$x = \frac{6}{5}, y = \frac{3}{5}$$

2.
$$x = 2, y = 1$$

3.
$$x = 4, y = -3, z = 2$$

4.
$$x = 4, y = -5, z = -3$$

5.
$$x = 1.5, y = 2.5, z = -5$$

6.
$$x = \frac{7}{3}, y = \frac{8}{3}, z = -\frac{4}{3}$$

7.
$$x = -\frac{5}{2}, y = \frac{4}{3}, z = \frac{3}{4}$$

8.
$$x = 0, y = 1, z = 2$$

9.
$$x = \frac{2}{5}k - \frac{3}{5}, y = -\frac{4}{15}k + \frac{2}{5}, z = \frac{1}{3}k + 1$$

10.
$$x = -z + 2, y = 2z + 2, z frei$$

Name:	Datum:	

2. MIT DETERMINANTEN RECHNEN

Nr.	Gegeben	Ergebnis
1.	$ \begin{vmatrix} \frac{3}{2} & 4 \\ \frac{3}{8} & \frac{2}{15} \end{vmatrix} $	
2.	$\begin{vmatrix} -\frac{4}{3} & -\frac{5}{9} \\ \frac{5}{2} & -\frac{7}{12} \end{vmatrix}$	
3.	$\begin{vmatrix} a-b & -(b+a) \\ b-a & a+b \end{vmatrix}$	
4.	$\begin{vmatrix} k+4 & -\frac{5}{2} \\ \frac{12}{5} & k-3 \end{vmatrix} = 0, k = ?$	
5.	$\begin{vmatrix} 1 & -3 & 3 \\ 4 & 0 & 2 \\ 2 & 5 & -7 \end{vmatrix}$	
6.	$\begin{vmatrix} 2 & 1 & 9 \\ 1 & -2 & -3 \\ 3 & 5 & 4 \end{vmatrix}$	
7.	$ \begin{vmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & -2 & 4 \\ 0 & 2 & 2 & 0 \\ 5 & 2 & 4 & 0 \end{vmatrix} $	
8.	$(-3) \cdot \begin{vmatrix} 2 & -5 & 3 \\ 4 & 6 & -8 \\ 7 & 9 & 2 \end{vmatrix}$	
9.	Ausklammern! $\begin{vmatrix} ab & -c & a^2 + ab \\ cd & -ab^2 & -ac \\ -bd & c & a - ad^2 \end{vmatrix}$	
10.	$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 9 & 7 \\ 5 & 8 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 3 & 7 & 2 \end{vmatrix}$	

1	13
1.	10

$$2. \qquad \frac{13}{6}$$

4.
$$k_1 = -3, k_2 = 2$$

7. Entwickelt nach der vierten Spalte:
$$-24$$

a aus der dritten Spalte ausklammern:
$$\begin{vmatrix} ab & -c & a+b \end{vmatrix}$$

9.
$$\begin{vmatrix} ab & -c & a+b \\ cd & -ab^2 & -c \\ -bd & c & 1-d^2 \end{vmatrix}$$

Name: _____ Datum: _____

3. GLS MIT DETERMINANTEN LÖSEN

Nr.	Gegeben	Ergebnis
1.	2x + 5y = 19 $3x - y = 3$	
2.	7x - 8y = 9 $3x + 4y = -11$	
3.	$\frac{2x}{3} - 3y = -\frac{20}{9}$ $3x + y = -\frac{1}{3}$	
4.	10x - 3y - 18 = 3(3y - x) + 20 $4x + 3y - 7 = 6 - (x + 4y + 10)$	
5.	$\frac{3(x-1)}{4} + \frac{5(y+4)}{6} = 5$ $\frac{2(y-3)}{3} - \frac{x+3}{2} = -\frac{8}{3}$	
6.	$3(y + 12) = 15(x + 2)$ $8 = -\frac{4}{5}(3x + y)$	
7.	5x - 3y + 8z = 29 $3x + 8y - z = -8$ $-2x + 3y + 4z = -8$	
8.	3x + 2y - z = 8 2x + y + z = -4 -x - 2y + z = -10	
9.	$m \cdot x - n \cdot y = p$ $n \cdot x - m \cdot y = q$	
10.	$(a+b) \cdot x + (a-b) \cdot y = a$ $(a-b) \cdot x - (a+b) \cdot y = b$	

1.
$$D = -17, D_x = -34, D_y = -51$$

 $x = 2, y = 3$

2.
$$D = 52, D_x = -52, D_y = -104$$

 $x = -1, y = -2$

3.
$$D = \frac{29}{3}, D_x = -\frac{29}{9}, D_y = \frac{58}{9}$$
$$x = -\frac{1}{3}, y = \frac{2}{3}$$

4.
$$D = 151, D_x = 302, D_y = -151$$

 $x = 2, y = -1$

5.
$$D = -66, D_x = -66, D_y = -132$$

 $x = 1, y = 2$

6.
$$D = 8, D_x = -8, D_y = -56$$

 $x = -1, y = -7$

7.
$$D = 405, D_x = 1215, D_y = -810, D_z = 405$$

 $x = 3, y = -2, z = 1$

8.
$$D = 6, D_x = -6, D_y = 18, D_z = -30$$

 $x = -1, y = 3, z = -5$

9.
$$D = -m^2 + n^2, D_x = -mp + nq, D_y = -np + mq$$
$$x = -\frac{nq - mp}{m^2 - n^2}, y = -\frac{np - mq}{n^2 - m^2}$$

10.
$$D = -2a^{2} - 2b^{2}, D_{x} = -a^{2} - 2ab + b^{2}, D_{y} = -a^{2} + 2ab + b^{2}$$
$$x = -\frac{-a^{2} - 2ab + b^{2}}{2(a^{2} + b^{2})}, y = -\frac{-a^{2} + 2ab + b^{2}}{2(a^{2} + b^{2})}$$

Name: ______ Datum: _____

4. MIT MATRIZEN RECHNEN

Für die Aufgaben 1. bis 4.: $A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 5 \\ -1 & 7 & 9 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 5 & 4 \\ 2 & -6 & 7 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 1 & 3 \\ 7 & 3 & 0 \end{pmatrix}$

Nr.	Gegeben	Ergebnis
1.	3A - 2B + C	
2.	A + 3B - C	
3.	$A^T + 2B + C^T$	
4.	$3A - B^T + 3C^T$	
5.	Klammer $\sqrt{2}$ aus! $ \begin{pmatrix} 2 & -2\sqrt{2} \\ 1 & -2 \end{pmatrix} $	
6.	Klammer x aus! $\begin{pmatrix} x^2 & xy & xz \\ x^3 - x & 4x^2 & 3x - x^2 \end{pmatrix}$	
7.	Berechne die Spur! $\begin{pmatrix} -7 & 3 & -5 \\ 6 & -4 & 4 \\ 2 & 8 & 12 \end{pmatrix}$	
8.	Berechne A und B ! $A + B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ $A - B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$	
9.	Berechne $A!$ $A = 2 \cdot \begin{pmatrix} 4 & 1 \\ -4 & 5 \end{pmatrix} + 4A + \begin{pmatrix} 1 & -2 \\ -1 & -7 \end{pmatrix}$	
10.	Gegeben sind A und B . Berechne die fehlenden Werte! $A = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}, B = \begin{pmatrix} 12 & x \\ y & z \end{pmatrix}$ $-4A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} + k \cdot B$	

Nr.	
1.	$\begin{pmatrix} 11 & 1 & 7 \\ -4 & -3 & 10 \\ 0 & 36 & 13 \end{pmatrix}$
	$\begin{pmatrix} 1 & 10 & -2 \\ 6 & 16 & 14 \\ -2 & -14 & 30 \end{pmatrix}$
3.	$ \begin{pmatrix} 5 & 6 & 8 \\ 7 & 13 & 18 \\ 11 & -4 & 23 \end{pmatrix} $
4.	$ \begin{pmatrix} 15 & 4 & 22 \\ 0 & 4 & 30 \\ 14 & 26 & 20 \end{pmatrix} $
5.	$\sqrt{2} \cdot \begin{pmatrix} \sqrt{2} & -2 \\ \frac{1}{\sqrt{2}} & -\sqrt{2} \end{pmatrix}$
6.	$x \cdot \begin{pmatrix} x & y & z \\ x^2 - 1 & 4x & 3 - x \end{pmatrix}$
7.	1
8.	$A = \begin{pmatrix} \frac{3}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{3}{2} \end{pmatrix}, B = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$
9.	$A = \begin{pmatrix} -3 & 0 \\ 3 & -1 \end{pmatrix}$
10.	k = -2, x = -3.5, y = -4.5, z = -1

Name: _____ Datum: _____

5. MATRIZEN MULTIPLIZIEREN

Nr.	Gegeben	Ergebnis
	$A = \begin{pmatrix} 2 & -3 \\ -4 & -5 \end{pmatrix}, B = \begin{pmatrix} -4 & -6 \\ 3 & 2 \end{pmatrix}$	
1.	$A \cdot B$	
2.	$B \cdot A$	
3.	$\begin{pmatrix} -1 & 2 \\ 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & -3 \\ 0 & -5 & \frac{3}{2} \end{pmatrix}$	
	$C = \begin{pmatrix} 3 & -4 \\ -2 & 5 \end{pmatrix}, D = \begin{pmatrix} 4 & 0 & -3 \\ 3 & 4 & 2 \end{pmatrix}, E = \begin{pmatrix} 4 & 0 & -3 \\ 3 & 4 & 2 \end{pmatrix}$	$= \begin{pmatrix} -1 & 5 & 3 & -2 \\ 2 & 1 & 2 & 3 \\ -3 & 2 & 4 & 6 \end{pmatrix}$
4.	$C \cdot D$ und $(C \cdot D) \cdot E$	
5.	$D \cdot E$ und $C \cdot (D \cdot E)$ Warum ist $(D \cdot E) \cdot C$ nicht möglich?	
	$F = \begin{pmatrix} -2 & 1 & -4 \\ 5 & 3 & 6 \end{pmatrix}, G = \begin{pmatrix} -1 & 4 & 5 \\ 4 & 3 & 2 \end{pmatrix}, A$	$H = \begin{pmatrix} 2 & 1 & 0 & -3 \\ 1 & 0 & 2 & 5 \\ -2 & 4 & 7 & 3 \end{pmatrix}$
6.	$F+G$ und $(F+G)\cdot H$	
7.	$F \cdot H, G \cdot H$ und $F \cdot H + G \cdot H$	
8.	Weise nach: $(I \cdot J)^T = J^T \cdot I^T$ $I = \begin{pmatrix} -1 & 2 & 1 \\ 3 & 4 & -2 \end{pmatrix}$ $J = \begin{pmatrix} -2 & 0 & 4 & -1 \\ 3 & 4 & 0 & 2 \\ -4 & 1 & 5 & 6 \end{pmatrix}$	
9.	Berechne m, n, p, q für $K = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, L = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$ und $K \cdot L = L \cdot K!$ Gib ein Lösungsbeispiel an!	
10.	Berechne m, n, p, q für $M = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}, N = \begin{pmatrix} m-2 & n \\ p & q+1 \end{pmatrix}$ und $M \cdot N = N \cdot M!$ Gib ein Lösungsbeispiel an!	

Nr.	
1.	$\begin{pmatrix} -17 & -18 \\ 1 & 14 \end{pmatrix}$
2.	$\begin{pmatrix} 16 & 42 \\ -2 & -19 \end{pmatrix}$
3.	$\begin{pmatrix} -1 & -14 & 6 \\ 3 & 22 & -12 \end{pmatrix}$
4.	$C \cdot D = \begin{pmatrix} 0 & -16 & -17 \\ 7 & 20 & 16 \end{pmatrix}, (C \cdot D) \cdot E = \begin{pmatrix} 19 & -50 & -100 & -150 \\ -15 & 87 & 125 & 142 \end{pmatrix}$
5.	$D \cdot E = \begin{pmatrix} 5 & 14 & 0 & -26 \\ -1 & 23 & 25 & 18 \end{pmatrix}, C \cdot (D \cdot E) = \begin{pmatrix} 19 & -50 & -100 & -150 \\ -15 & 87 & 125 & 142 \end{pmatrix}$ $(D_{2,3} \cdot E_{3,4}) \cdot C_{2,2} = P_{2,4} \cdot C_{2,2}$
6.	$F+G = \begin{pmatrix} -3 & 5 & 1 \\ 9 & 6 & 8 \end{pmatrix}, (F+G) \cdot H = \begin{pmatrix} -3 & 1 & 17 & 37 \\ 8 & 41 & 68 & 27 \end{pmatrix}$
7.	$F \cdot H = \begin{pmatrix} 5 & -18 & -26 & -1 \\ 1 & 29 & 48 & 18 \end{pmatrix}, G \cdot H = \begin{pmatrix} -8 & 19 & 43 & 38 \\ 7 & 12 & 20 & 9 \end{pmatrix}$ $F \cdot H + G \cdot H = \begin{pmatrix} -3 & 1 & 17 & 37 \\ 8 & 41 & 68 & 27 \end{pmatrix}$
8.	$(I \cdot J)^T = J^T \cdot I^T \begin{pmatrix} 4 & 14 \\ 9 & 14 \\ 1 & 2 \\ 11 & -7 \end{pmatrix}$
9.	$K \cdot L = \begin{pmatrix} m+p & n+q \\ -2p & -2q \end{pmatrix}, L \cdot K = \begin{pmatrix} m & m-2n \\ p & p-2q \end{pmatrix}, p = 0, q = m-3n$
10.	$M \cdot N = \begin{pmatrix} 2 - m + p & 1 - n + q \\ -4 + 2m & 2n \end{pmatrix}, N \cdot M = \begin{pmatrix} -m + 2n + 2 & m - 2 \\ 2(q + 1) - p & p \end{pmatrix}$ $p = 2n, \ q = m + n - 3$

Name: ______ Datum: _____

6. INVERSE, RANG, MATRIZENGLEICHUNGEN

Nr.	Gegeben	Ergebnis
	Aufgaben 1. bis 5.: Berechne jeweils die i	nverse Matrix!
1.	$A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$	
2.	$B = \begin{pmatrix} 1 & 0 & -1 \\ -8 & 4 & 1 \\ -2 & 1 & 0 \end{pmatrix}$	
3.	$C = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 4 & 2 \\ 2 & -2 & -2 \end{pmatrix}$	
4.	$D = \begin{pmatrix} 5 & 6 & 3 \\ 10 & 11 & 7 \\ 25 & 30 & 18 \end{pmatrix}$	
5.	$E = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & -1 & -2 & 3 \\ -1 & 2 & 2 & -4 \\ 0 & 1 & 2 & -5 \end{pmatrix}$	
	Aufgaben 6. bis 8.: Berechne den Rang!	
	$F = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{pmatrix}$	
7.	$G = \begin{pmatrix} 2 & 3 & -1 \\ 1 & -2 & -3 \\ 1 & 5 & 2 \end{pmatrix}$	
8.	$H = \begin{pmatrix} 1 & 3 & 2 & 5 \\ 3 & -2 & 0 & 1 \\ 2 & 4 & 3 & -2 \\ 1 & -6 & -3 & 3 \end{pmatrix}$	
	Aufgaben 9. und 10.: Löse die Matrizengl	eichungen nach X ! A , B , C und X sind $\in M_{(n,n)}$.
9.	AX - 2BX = C - B	
10.	AX + 2X - 3C = B	

1.
$$A^{-1} = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & 1 & -4 \\ 2 & 2 & -7 \\ 0 & 4 & -4 \end{pmatrix}$$

3.
$$C^{-1} = \begin{pmatrix} -\frac{2}{3} & 1 & \frac{4}{3} \\ \frac{1}{3} & 0 & -\frac{1}{6} \\ -1 & 1 & 1 \end{pmatrix}$$

4.
$$D^{-1} = \begin{pmatrix} \frac{4}{5} & \frac{6}{5} & -\frac{3}{5} \\ \frac{1}{3} & -1 & \frac{1}{3} \\ -\frac{5}{3} & 0 & \frac{1}{3} \end{pmatrix}$$

5.
$$E^{-1} = \begin{pmatrix} 2 & -1 & -1 & 1 \\ 0 & 0.5 & 1 & -0.5 \\ 5 & -4 & -3 & 2 \\ 2 & -1.5 & -1 & 0.5 \end{pmatrix}$$

6. Rang
$$(F) = 3$$

7.
$$Rang(G) = 2$$

8. Rang
$$(H) = 3$$

9.
$$AX - 2BX = C - B$$
$$(A - 2B)X = C - B$$

Von links multiplizieren: $(A - 2B)^{-1}(A - 2B)X = (A - 2B)^{-1}(C - B)$ Wegen $(A - 2B)^{-1}(A - 2B) = E$ ist $X = (A - 2B)^{-1}(C - B)$.

10.
$$AX + 2X - 3C = B$$

 $AX + 2X = B + 3C$
 $AX + 2EX = B + 3C$
 $(A + 2E)X = B + 3C$
 $(A + 2E)^{-1}(A + 2E)X = (A + 2E)^{-1}(B + 3C)$
 $X = (A + 2E)^{-1}(B + 3C)$

Name:	Datum:	

7. LINEARE ABBILDUNGEN

Nr.	Gegeben	Ergebnis
	Aufgaben 1. bis 9.: Berechne mithilfe der Abbildungsmatrizen die Koordinaten des	angegebenen Matrizen bzw. der zugehörigen Bildpunktes oder der Bildpunkte!
1.	$A = \begin{pmatrix} -4 & 3\\ 2 & -6 \end{pmatrix}, K(-2 5)$	
2.	$B = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & -4 \\ 1 & 5 & 2 \end{pmatrix}, L(1 3 -2)$	
3.	$C = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$ $M(2 3 1), N(3 1 2), O(1 2 3)$	
4.	$D = \begin{pmatrix} -\sin 90^{\circ} & \cos 90^{\circ} & 0\\ \cos 60^{\circ} & \sin 30^{\circ} & 0\\ 0 & 0 & 1 \end{pmatrix}$ $P(1 3 2)$	
5.	Q(4 -2), Spiegelung an $y = -x$	
6.	$R(2 \mid 3)$, Verschiebung mit $\binom{4}{5}$ Streckung mit $z=2,5$	
7.	S(2 2), T(3 1) $E = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, F = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, G = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$	
8.	U(4 3), Spiegelung an der y-Achse, Drehung um 60°, Streckung mit 2	
9.	$V(-2 \mid -4)$, Spiegelung an $y=x$, Drehung um 30°, Streckung mit 3	
10.	Durch welche Matrix wird $W(2\mid -3)$ auf $W'(-5\mid 7,5)$ abgebildet?	

Nr.	
1.	$K'(23 \mid -34)$
2.	L'(-1 11 12)

3.
$$M'(8|11|5), N'(5|14|8), O'(5|11|5)$$

4.
$$P'(-1|2|2)$$

5.
$$Q'(2|-4)$$

6.
$$R'(6|8), R''(15|20)$$

7.
$$S'(-4|4), T'(-6|2)$$

8.
$$U'(-4-3\sqrt{3}|3-4\sqrt{3})$$

9.
$$V'(3-6\sqrt{3}|-6-3\sqrt{3})$$

10. Streckung mit
$$z = \frac{1}{6}\sqrt{3}$$

8. EIGENWERTE UND EIGENVEKTOREN

Nr.	Gegeben	Ergebnis	
	Aufgaben 1. bis 5.: Berechne jeweils die Eigenwerte der gegebenen Matrizen!		
1.	$A = \begin{pmatrix} 2 & -3 \\ 1 & 6 \end{pmatrix}$		
2.	$B = \begin{pmatrix} -3 & -3.5 \\ 2 & 5 \end{pmatrix}$		
3.	$C = \begin{pmatrix} -1 & -7 \\ 7 & 13 \end{pmatrix}$		
4.	$D = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 3 & 2 \\ 1 & 1 & 2 \end{pmatrix}$		
5.	$E = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & 0 \\ 4 & 3 & 3 \end{pmatrix}$		
	Aufgaben 6. und 7.: Berechne jeweils die Eigenwerte und Eigenvektoren der gegebenen Matrizen!		
6.	$F = \begin{pmatrix} 3 & 2 \\ 1,5 & 5 \end{pmatrix}$		
7.	$G = \begin{pmatrix} -3 & 1\\ 2 & -4 \end{pmatrix}$		
	Berechne die Eigenwerte!		
8.	$H = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$		
	Berechne die Eigenwerte und die Eigenvektoren!		
9.	$K = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}$		
10.	Für welche Drehwinkel besitzt die Transformationsmatrix $L = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$ reelle Eigenwerte?		

Nr.

1.
$$\lambda_1 = 3, \ \lambda_2 = 5$$

2.
$$\lambda_1 = -2, \ \lambda_2 = 4$$

3.
$$\lambda_{1,2} = 6$$

4.
$$\lambda_1 = \frac{1}{2} \left(\sqrt{21} + 7 \right), \ \lambda_2 = \frac{1}{2} \left(7 - \sqrt{21} \right), \ \lambda_3 = -1$$

5.
$$\lambda_1 = \sqrt{5} + 3$$
, $\lambda_2 = 1$, $\lambda_3 = 3 - \sqrt{5}$

6.
$$\lambda_1 = 2, \ \lambda_2 = 6$$
$$\overrightarrow{v_1} = \begin{pmatrix} -2\\1 \end{pmatrix}, \ \overrightarrow{v_2} = \begin{pmatrix} \frac{2}{3}\\1 \end{pmatrix},$$

7.
$$\lambda_1 = -5, \ \lambda_2 = -2$$

$$\overrightarrow{v_1} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \ \overrightarrow{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

8.
$$\lambda_1 = \frac{1}{2} \left(-\sqrt{a^2 - 2ac + 4b^2 + c^2} + a + c \right), \ \lambda_2 = \frac{1}{2} \left(\sqrt{a^2 - 2ac + 4b^2 + c^2} + a + c \right)$$

9.
$$\lambda_1 = 3, \ \lambda_2 = 2, \ \lambda_3 = 1$$

 $\overrightarrow{v_1} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ \overrightarrow{v_2} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \ \overrightarrow{v_3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

10.
$$\alpha = 180^{\circ}$$